
Vol. 16 (1979) REPORTS ON MATHEMATICAL PHYSICS No. 2 

ON THE VACUUM STRUCTURE OF AN SU(2) YANG-MILLS THEORY 

D. H. MAYER* 

Institut fti Theoretische Physik, E. RW’III Aachen, Aachen, F.R.G. 

K. S. VISWANATHAN** 

Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada 

(Received November 23, 1978) 

By using a cotipactitication of the spatial part R3 of Minkowski-space different from the 
one-point compactification to S3, we get a new classification of the vacua for an SU(2) 
gauge theory. It contains, besides the vacua arising in the S3 compactification, the Gribov 
vacua as new classes. We discuss the role of pseudoparticle solutions within this framework 
and comment on the problem of the Coulomb gauge degeneracy. 

I. Iutroduction 

In several papers different aspects of the topological structure of the possible vacua 
in an SU(2) Yang-Mills theory have been discussed [1)_[6]. It turns out that this structure 
is most easily seen in the A,, = 0 gauge. The fields &?) which give rise to zero energy 

configurations are the pure gauge fields &?) = g-‘@)qg(?), with g: R3 + W(2) stand- 
ing for any mapping of the spatial part R3 of Minkowski space into the gauge group SU(2). 
If one allows only continuous mappings g with the property :mmgcj;) = const then one 

can classify these mappings via n3(S3), the third homotopy gr-up of the 3-sphere S3: 
every mapping of the above kind induces a mapping 2: S3 --, S3. Since 7c3(S3) r Z, 
onegets a sequence A:, n = 0, rtl, . . . . of vacuum fields. It was shown in [2], that under 
this restriction, only the field z(x) E 0 full% the Coulomb gauge condition v’. i(?) = 0. 

In an interesting paper [5] Gribov found two additional solutions in the Coulomb 
gauge. These solutions correspond to nontrivial mappings g,: R3 --, SU(2), and in fact 
do not belong to the class of mappings giving rise to mappings from S3 into S3. In the 
literature these vacua are called half-integer valued vacua, because some quantity q, for 

which the field A’. is always an integer, turns out to be + f . The integer valued vacua can 

be understood from purely topological considerations. So one can ask the question: 
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Is there also a topological explanation for the half-integer ones? Or, in other words, does 
there exist a classification such that the half-integer vacua also appear as homotopy 

classes? 
An affirmative answer to this question would clarify to a large extent the confusion 

that exists in the literature on this subject (see for instance, [2], [4]). The main reason for 
the confusion in our opinion is the fact that one has not as yet really analysed the topo- 
logical structure of the spaces one is working in. Since Gribov’s solutions are not mappings 
from S3 into S3, one must be careful in drawing conclusions using topological invariants 
arising from n3 (S3). It is necessary to specify the spaces on which the mappings are defined : 

If one takes, for example, the unit 3-ball z, as a compactification of R3, the topological 
structure is trivial. Every mapping of this space into any other space is always homotopic 
to the trivial mapping. 

From these remarks it is already clear that the problem of classification of the vacua, 
that is of mappings of R3 into SU(2), is closely related to the manner of compactification 
of the space R3. By using different compactifications one is led, in general, to completely 
different classifications. 

If one employs, as one did up to now in the literature, the so-called Alexandroff compac- 
tification of R3, that is to say the one-point compactification as S3, one gets the classifi- 
cation via x3(S3). This compactification can be described also in terms of the extension 
problem for certain continuous mappings g: R3 + S3. The one-point compactification 
allows us to extend continuous mappings g: R3 + S3 such that limmg(Z) = e E SU(2). 

In fact, these are the only mappings which can be extended this way. 
This suggests that we describe a compactification x of R3 by giving the set of all map- 

pings g: R3 + S3 which are to be extended to mappings 2: x -+ S3. The set of all such 2 
should be the set of al1 continuous mappings from x into S3. 

One knows [7] that there exists for every reasonable topological space X a compacti- 
fication /X, called the Stone-tech compactification, such that every mapping g: X + K 
where K is a compact space, can be uniquely extended to a mapping g: @X + K. 

The space ,6R3 is a very large space, in the sense that it has a large number of points 
at infinity, which is just /lR3/R3. One sees that the one-point compactification is just on 
the other end of the hierarchy of compactifications, where infinity consists exactly of 
one point. 

We do not known if the space /3R3 is the one nature has chosen to live in. We propose 
in this paper another compactification, which has its place somewhere between PR3 and S3. 
We saw that the choice of a set of mappings, which we want to be extendable in the way 
explained above is equivalent, in some sense, to embedding the space R3 into a compact 
space x. We will therefore take a set of mappings and classify these mappings into home- 
topy classes. This gives then, as a by-product, some useful information about the space 

x [71. 
To obtain a classification of vacua for the SU(2) Yang-Mills Theory in which the 
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Gribov vacua can be explained from a topological point of view, we have to choose a set z 
of mappings g: R3 -_, S3 such that the Gribov mappings belong to this set. This is the 
strategy we want to follow in this paper. By choosing the set T appropriately, we are able 
to give a complete classification for all the vacua which have been considered in the litera- 
ture. We show that all these vacua can be classified according to a topological invariant 
whose value is any positive or negative half-integer. The Gribov vacua turn out to be the 
generators for all these classes and seem therefore to be the fundamental vacua. This we 
discuss in the first section of this paper. 

Then we discuss the possibility of pseudo-particle solutions in this framework. It turns 
out that the only pseudo-particle solutions that are possible, interpolate between integer- 
valued vacua or half-integer ones. Others are not allowed in that framework. 

In a final section we comment on the problem of degeneracy of the Coulomb-gauge 
condition. We show why statements concerning this problem appearing in the literature, 
as in [2], are not complete. Hence it is pointed out that it is not possible to draw any con- 
clusion about the absence of any other solutions with higher topological numbers in the 
Coulomb gauge. 

In the Appendix we show how our classification for the vacua in the SU(2) theory is 
connected with an analogous classification in an SO(3) gauge theory. 

II. A new “compactification” of the space R3 

The problem we are considering here is to classify the vacua of a SU(2) Yang-Mills 
theory governed by the Lagrangian 

L= - $F~F~,, (1) 

where Ffi’ = a’A’ - avAp + I? eobc AbpA ’ 
1ntr:ducing the mat;ices 

e * 

A” = eAap$-, 
0’ 

Fw’ = eF fi*-- 
a 2i 

where c“ are the Pauli-matrices, the classical equations of motions for the Lagrangian (1) 
are 

a,Fp’+ [A,, Fp”] = 0. (3) 

The vacuum states of the theory are characterized by a vanishing Fpv. Furthermore, 
we work in the gauge A O = 0. The vector potential J(Z) is thus a pure gauge field 

z(z) = g-“(@g(z). (4) 

In what follows, we work at a fixed time x0 so that the symbol g(x) in (4) can be looked 
upon as a mapping g: R3 -_, SU(2). 

In order to obtain a canonical classification for these mappings we must impose regu- 
larity conditions on g. So the least thing to demand is that they be continuous. As discussed 
in 111 a physically relevant classification is given by the homotopy classes of the mappings 
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g: R3 + S3. We also assume that the mappings g: R3 -P S3 are such that the lim g(Z) 
II~ll+~ 

exists and is a function of 2 = 3/r only, where r = 1 [iI I. 
Let z = (g: R3 + S3, g continuous and,,j/,mmg(S2) = f(g) exists). Then we see that the 

compactification x of R3 which allows precisely these mappings as continuous mappings 
from x into S3 is given by the unit ball 5, of R3, where 5, is defined as 

5, = (3~ R3: l/St// < I>. 

The space R3 is mapped into z3 via the mapping v defined as 

(5) 

and q(R3) = interior of B3. 
The points at infinity form a topological 2-sphere. We denote the mapping of 5, + S3 

induced by an element g of t by 2. Then the classification of these mappings into homotopy 
classes is trivial because the space z3 is contractible and therefore, any mapping can be 
continuously deformed into the constant mapping. The conclusion would then be that 
from the topological point of view there exists only one vacuum: the vacuum structure 
is unique. 

To get nontrivial topological structures one has to look for different compactifications. 
The standard procedure is to identify on the space 2, certain points, or, mathematically 
speaking, introduce equivalence relations and form quotient spaces. The one which has 
been used so far is given by identifying the boundary ai, of 2, to one point. Then the 
quotient space is just S3. In term of the mapping g E r, one considers only g’s such that 
f(2) = ii: g(Z) = e E S3. These mappings form a subset -cl of t. Consider next the subset 

to of t defined by 

to = (g E t: f(2) = &f(--i)}. (7) 

If we denote by Z the mappings 3: 5, -+ S3 induced by the g E t, we can describe the set 
Z. as: 

to= GE?:g@)= +g(-3) for 2~aB~). (8) 

Let us now try to classify these mappings into homotopy classes. It is immediately clear 
that the set Z. falls at least into two classes, Z+ , Z_ which are given by 

t+ = (2 ~7~: 26) = g(4), 3 E ai,], (9) 

t_ = (gee: g(z) = --g(-+, 2 aB3j. WV 

It is ah clear that the mappings in the set z1 induce mappings 2: S3 + S3 belonging 
to the class t+. 
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El. classification of ct+ 
LEMMA 1. The elements oft+ are in one to one correspondence with the continuous 

mappings of 3-dimensional real projective space P3 into S3. 

This is almost trivial, because 3-dimensional real projective space P3 can be visual- 
ized as the unit-ball g, with antipodal points on the boundary S identified. For a proof 
see for instance [8]. 

Then we are left with the homotopy classification of all continuous maps of P3 into 
S3. By definition, this is just the cohomotopy set n3(P3), which is a group. (For definitions 
see [9].) The Hopf Theorem [lo] on the other hand tells us that there is a one-to-one cor- 
respondence between n3(P3) and H3(P3), where H” denotes the third cohomology group 
of P3 with integer coefficients. The cohomology groups of all projective spaces are well 
known and we have H3(P3) = 2. 

This solves the classification of the mappings in t+. Geometrically, these mappings 
are again classified according to the way they cover S3. To find out to which class a given 
mapping 2 E Z+ belongs, one has first to deform the mapping continuously so that at 
every point on the sphere the orientation of the image of P3 is the same. (Remember P3 
is an orientable space.) Then look how often the image covers the 3-sphere and take the 
largest integer n smaller than this number. Depending on the orientation of Im(P3) relative 
to the orientation of S3 the mapping belongs to the homotopy class fn. From this it is 
clear that if one takes for P3 and S3 the proper orientation, then every mapping 2 E Z1 c %+ 
which belongs to the homotopy class n in ti belongs to the homotopy class n in 7, as well. 
If n{X, Y) denotes the homotopy classes of continuous mappings from the space X into 
the space Y, then we may state that n(S3, S3) is in one-to-one correspondence with 
n(PJ, S3). 

ll.2. Classiiication of t_ 

It is clear from their definition [5] that the Gribov mappings 

8*c9 
22.3 = exp+i a(r)T ( 1 (11) 

where tl(r) is a solution of the differential equation 

V2a- r2 -1-sin2a = 0 (12) 

subject to the boundary condition a(O) = 0, and CL(W) = n/2, induce mappings g* of g3 
which belong to the set Z_. 

In the literature [23, [4], these mappings are said to have half-integer “topological” 
charge q defined by 

1 
q = - 2x2 --s l%2 

B 
f 

@,, (13) 

where g,(R3) is the image of R3 in S3; q turns out to be * f . 
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It is clear that this number q is in general not topologically invariant. (See the discussion 
above). For mappings g E t this is evident, because such a g is homotopic to zero. How- 
ever, we show below how one can assign a topological meaning to q for the mappings to. 
To get a feeling of what is going on, consider first the one-dimensional case: the analogous 
problem is to classify all mappings g of the unit one-ball [- 1, + l] into S, such that 

g(+l) = -g( - 1). It is clear that these mappings fall into homotopy classes. Given 
a map g, one first deforms it again in a continuous way into a mapping g such that the 

orientation of the image g@,) is at every point the same. One sees that this image covers 
the unit circle S, with half-integral multiplicity. According to the orientation of s(gl) 
relative to that of S1 this half-integer (plus or minus) characterizes the homotopy classes. 
It now follows directly that exactly the same thing happens in higher dimensions. We see 
that the number q for the three-dimensional case 

(14) 

is a topological invariant for the mappings in t_ and takes values in the set 

I +f, +;, . ..). (15) 

Any element ‘g1,2 in the class q = f is a generator for all other classes in Z_ . These are 

generated by taking odd powers of gl ,2. Even powers of El,2 generate the class t+ . In this 

sense we can say that the Gribov vacuum which belongs to the class q = + i is the funda- 

mental vacuum, because it generates all other vacua. 
An interesting mathematical question which one naturally asks at this stage is this: 

Does there exist a compact space x such that the mappings S E To are the continuous 
mappings of x into S3? From the Hopf Theorem it would then follow that the third coho- 

mology group H3(%) is just given by the group G = 3 2. Unfortunately, we could not find 

the answer to this question. But we show in the Appendix that the set To can be related 
to the set of continuous mappings of P3 into SO(3) 2 P3. 

III. Pseudo-particle solutions 

For a general discussion of the role these field configurations can play in a quantized 
version of a gauge theory we refer the reader to the review article by Jackiw [l]. We only 
repeat here that the pseudoparticle configurations 8”&, x) are defined as the imaginary 
time self-dual solutions of the classical equations of motions with zero Euclidean energy. 
It is known that these solutions can be classified by the Pontryagin indexp which is given by 

1 
P = - 3~~2 s d4x sflya,s Tr (F,,F& 

and is an integer, provided Fpy vanishes fast enough at infinity and can, therefore, be looked 
upon as a mapping defined on S4. 
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If one assumes sufficient smoothness for the F,,, expression (16) can also be written 

as [I]: 

P = 4+-4-+9L (17) 
where 

1 
4*=-- 24x2 1 R, d3~&ijkTr(AiAjAk)IX,~im 9 

In the last expression 2 denotes the infinite extended cylinder in R4 with base manifold 
R3 and dSp is the oriented volume element on the cylinder. Because we are only interested 
in the A, = 0 gauge, the term qL vanishes identically so that relation (16) reads 

P= 4+-q-* (18) 

Fpty + 0 as llxl] --f co implies that A’ is a pure gauge, i.e. 

lim 2(x4, 3) = g-‘(xd, Zi)Fg(x,, 3) (19) 
r’+m 

where r’ = 1/xi+Z2 and g: R$ + SU(2). 
Specifically for x4 + + co we get 

lim 2(x,, 2) = g-‘(k) !i)Vg(f ,Z) 
Q-rf@J 

(20) 

where g(+, a): R3 + SU(2). 
Inserting (20) into the definition of q+ and q_ one finds that these numbers are topo- 

logical invariants, as long as we take the mappings g( + , a) : R3 + SU(2) from a certain 
set z which we discussed in the first section; Remember the difference q+ -q- is always 
a topological invariant. In other words, only if one stays within a fixed compactification 
x of R3, the numbers q+ and q_ are topological invariants. So, in discussing properties 
of the pseudo-particle solution by using topological arguments one has to be very careful 
in specifying exactly what compactification of R3 one is going to use and not to change 
this compactification from case to case. 

After this remark, let us write down what we mean exactly by a pseudo-particle solu- 
tion 2(x4, x) in the A4 = 0 gauge. 

(a) 2(x4, 3) must satisfy the classical equation of motion on Euclidean space R4 
and it must have zero energy in this space. 

- (b) If X,t’=m A ( x4, ?;) = g-l(+) Z)?g(+, 3) then we must have 

g(+,z) E50. (21) 

= g-‘(x4, 2) ?g (x4, ;;> then the mapping 

g&) := g(xq,zC): s + As 
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must satisfy the condition 

Ai immediate consequence of these properties is that the pseudo-particle solution 2(x4, 32) 
induces a homotopy /I,~@) : = g(x4, 2) of mappings of the space at infinity into the 
3-sphere. Therefore we get the following result: 

LEMMA 2. There cannot be any pseudo-particle solution 2(x4, 3) such that z(+ CD,?) 
=g-‘(+,Z)?g(+,si) with 8(+,3)~7~ and ;(-a,?) = g-‘(-,X)Tg(-,Z) with 

j7j( - ,2) E 5, respectively. 

In other words tunnelling between half-integer and integer valued vacua is not possible 
within our choice of compactification of R3. 

On the other hand, there is certainly tunnelling between the integer valued vacua 
because this is known [l] for the vacua classified via n3(S3). There remains the problem 
of tunnelling between half-integer vacua. In fact, such a pseudo-particle solution can be 
constructed. Take the BPST instant on [ll] Afi( x4, “x> and transform it into the A4 = 0 
gauge, such that it connects the q = 0 with the q = 1 vacuum [l]. Then make a further 
gauge transformation induced by the Gribov mapping g- @) . Then we get a field 2(x4, 2) as 

&x4, s;) = gz’(st)~~psTg_(jt)+g_l~)fig-(55). (22) 

Let us see how this field behaves at infinity: 

lim 2(x4, 2) = (g,Og-~))-‘~(gl~)g-~)) 
x4++m 

where g,(X) is a mapping R3 -+ S3 such that lim g,(Z) = 1 and has topological number 
f-+m 

q = 1. (See for instance [l]). The mapping g1 + g_ therefore induces a mapping 21 *g- 

in the class t_ with topological number q = i and describes a q = f vacuum. For x4 + - co 

one gets 

lim 2(x4, 2) = gz’(I?)?g_(X) 
x4+--m 

and therefore we are dealing with a vacuum with q = - + . For fixed x4 and 2 -, co 

we get finally 

lim X(x4,jt) = (g,,(;l)g_(;l))-l~(g,,(ji.)g_(~)). 
J+m 

Because g,,(i) = gX,( -i), we find 

g&)g-(si-) = -gJ--~)g-(--9. 

Therefore 2(x4, r;> as defined in (22) is an allowed pseudo-particle solution, which connects 

the two vacua q = + + and q = - f. The above analysis must be modified if one allows 

for two different compactifications of the space R3 at times t = + co and t = - CO. 
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IV. The vacuum structure in the Coulomb gauge 

Let us discuss in this final section the vacuum structure in the so-called Coulomb gauge: 

aa=o. (23) 
This problem has been under intensive investigation by several authors since Gribov’s 
[5] work. The possible existence of further solutions more general than Gribov’s equation 
(23) was investigated in [2]. It was shown in this paper that equation (23) does not admit 
besides the trivial solution 2 = 0 any other i(Z) which is obtained from a gauge mapping 
g(Z) with lilt g(Z) = e E SU(2). 

It is furthermore claimed in that paper that there cannot be any solution z(Z) 
= g-‘@)Tgcj;) such that the mapping g(?) covers S3 more than once. Unfortunately, 
the authors do not say which compactification of R3 they are using. Anyhow, we want 
to show why their proof of Statement B in the above mentioned paper is not complete 
and therefore is not proven. The main argument in their proof is the observation that any 
mapping of R3 which covers the sphere more than once has the property that it sends 
a certain two-dimensional surface into one point on the sphere. This is only true for map- 
pings g: R3 + S3 such that lii_g(Z) = const E SU(2). 

Indeed it is very easy to construct mappings g: R3 -+ S3 such that not even a one- 
dimensional subspace of R3 goes to the same point and nevertheless cover S3 more than 
once. Furthermore, g has topological number equal one. One only has to use the fact 
that S3 can be obtained in a very simple way as a quotient space of gJ. Let us define this 
equivalence relation : 

- 
?t,?~B3, 2 = (Xl, x2, x3), P = (Yl,UZ,Y3). 

3-7 iff 
1 

Z,~4iT~3 and 2 = 3, 
- 

Zi?;,TEaB3 and Xi =yi, i= 1,2. 

It is well known that the quotient space g3/ - is topologically the 3-sphere [12]. So the 
natural projection PZ: Z3 + B3/- gives a continuous mapping of 5, onto S3 such that 
S3 is completely covered and at most two points in B3 have the same image in S3. 

Starting from this observation one can now construct continuous mappings of any 
topological number /q[ 2 1 belonging for instance to the set to. 

So even if one restricts oneself to this set z. of mappings from R3 into S3 statement B 
in the above mentioned paper [2] is not proven. So the possible existence of Coulomb 
gauge vacua with any topological number q = _+n/2 is not excluded by the arguments 
given there. 

v. Conclusions 

We have shown in this paper how different classifications of vacua in a SU(2) gauge 
theory arise from different compactifications of the spatial part R3 of Minkowski space. 
By using the set to of mappings g: R3 4 S3 we obtained a classification in terms of half- 
integers such that the Gribov vacua belong to the classes _+ i. 
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It seems that the half-integer and integer valued vacua are completely separated from 
each other in the sense that there is no tunnelling between them via pseudo-particle solu- 
tions. This result emerges as a consequence of our choice of compactification of R3. 

If one allows for a larger set of mappings than our set to, then completely different results 
are to be expected. 
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Appendix 

In this appendix we want to show how the classification of the set To is related to the 
classification of the vacua in an SO(3) gauge theory when one compactifies the space 
R3 to P3. 

This problem can be solved by using a Theorem of Wada and Olum [13]: it says that 
the homotopy classes of all mappings g: P3 + SO(3) zP3 are in one-to-one correspond- 
ence with the following group G 

G = H’(P3, 2,) 0 H3(Z”, 2). (Al) 

H1 denotes the first cohomology group of the space P3 with coefficients in the group 
2,. H3 denotes the third cohomology group with integer coefficients. Both these groups 
are known and are given by 

H’(P3, 2,) = z,, P(P, Z) = 2. 
Therefore G is the direct sum of the two groups 

G = Z, 0 Z. (AZ) 
Let us now show the connection with the classification of Zo. Let g E 7,. Then we define 
a mapping f: B7, + P3 by 

$= noog, (A31 
where z: S3 + P3 is the natural projection. 

Because x(y) = z(--y) for all y E S3, we get immediatelyf(x) = A-x) for all x E a&. 
Therefore finduces a mapping f: P3 + P3. In this sense every mapping 2 E To can be 
also looked upon as a mapping f: P3 --, P3. It is also clear that the mappings S and 
-S E to induce the same $ 

Let us next show how the sets t+ and 3_ are defined in terms of mappings of P3 into 
P3. It can be shown that every mapping f: P3 --) P3 induces an homomorphism f,: 
q(P3) + nl(P3) of the fundamental group of P3. Because nl(P3) = Z,, there exist 
only two homomorphisms: 

h, = 0 (trivial map), 

h- = id (identity map). 
(A4) 
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This gives a first classification of all mappingsf: P3 + P3 into two classes: 

f, = h+ or f, = h_. 

A little reflection shows that every g E 5, induces a mappingfsuch that& = h, and every 
get_ anfwithf,=h_. 

If one denotes by 6* the sets 

& = {f: P3 -+ P3: f, = h,}, (A5) 

then one can easily deduce the following lemma from the work in [13] : 

LEMMA. The homotopy classljication of the set Z+ is in one-to-one correspondence with 
that of the set l+. The classification of the set 5_ / ([ + l/2], [- l/2]) correspondr in a one- 
to-one manner to that of the set E-4(1/2, O)]. The classes [l/2] and [-l/2] correspond 
to the singZe class [(l/2,0)] in E_ . 

Therefore, for instance, the two Gribov vacua belong to the same homotopy class 
in an SO(3) theory with the space P3 as the compactification of R3. 
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